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This experimental study extends our earlier work (Hsu, Hsu & Street 1981) on 
U,/c = 1.54 to U,/c = 0.88, 1.10, 1.36 and 1.87, where U ,  is the mean-free-stream 
wind velocity and c is the celerity of the water wave. This was accomplished by 
changing the speed of the turbulent wind, while the water wave was maintained a t  
a frequency of 1 .O Hz and wave slope of 0.1. The consistency between the results of 
the present and earlier experiments is established. The experimental results indicate 
that the mean velocity of the typical log-linear profile basically follows the waveform. 
However, the surface condition for the wind is regarded as supersmooth because the 
mean turbulent shear stress supported by the current is relatively lower than that 
supported by a smooth flat plate. The structure of the wave-induced velocity fields 
is found to be very sensitive to the height of the critical layer. When the critical height 
is high enough that most of the wave-induced flow in the turbulent boundary layer 
is below the critical layer, the structure of the wave-induced velocity field is strongly 
affected by the Stokes layer, which under the influence of the turbulence can have 
thickness comparable to the boundary-layer thickness. When the critical height is 
low enough that most of the wave-induced flow in the boundary layer is above the 
critical layer, the structure of the wave-induced velocity fields is then strongly 
affected by the critical layer. The structure of the critical layer is found to  be nonlinear 
and turbulently diffusive. This implies that  the inclusion of both the nonlinear and 
the turbulent terms in the wave-perturbed momentum equations is essential to 
success in the numerical modelling. The response of the turbulent Reynolds stresses 
to the wave is found to depend on the flow regimes near the interface or in the 
boundary layer. Near the interface, the wave-induced turbulent Reynolds stresses 
are found to be produced mainly from the stretching and changing in the direction 
of the turbulent velocity fluctuations due to the surface displacements. In the 
boundary layer, the eddy-viscosity-type relation between the wave-induced turbulent 
Reynolds stresses and the wave-induced velocities as found in Hsu et al. (1981) for 
U,/c = 1.54 is also found to hold for the other U , / c  values of this study. 
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1. Introduction 
In  our earlier paper (Hsu, Hsu & Street 1981, hereinafter referred to  as I),  we 

reported the turbulent airflow structure over a progressive water wave f ( x ,  t ) ,  as 
measured in a transformed wave-following coordinate system (x*, y*, z*) given by 

x = x*, (1.la) 

Y = Y* +f(Y*) il", ( 1 . l b )  

z = z*, (1.1c) 

where (x, y, z )  is a Cartesian coordinate system with x in the wave propagation and 
wind direction, y in the vertical direction measured form the mean water level and 
z in the horizontal direction normal to x. The functionf(y*) was chosen to be 

where k is the wavenumber and H is the height from the mean water level to the 
channel roof of the experimental facility. Apparently y* = constant represents a 
streamline of potential flow over the wave and y* = 0 corresponds to the air-water 
interface y = f .  Note that f(y*) +ePky* when H+ 03. I n  I, the mean free-stream wind 
velocity U ,  is 2.40 m/s and the mechanically generated water wave has a frequency 
of 1 Hz, which gives the wave celerity c = 1.56 m/s and the wavenumber 
k = 4.03 m-l. The wave slope ka is 0.107, where a is the wave amplitude. 

The main results found in I were as follows. 
(a)  The mean flow basically follows the waveform ; hence the transformed wave- 

following frame naturally provides a better representation of the airflowfields than 
a fixed-frame representation. 

(b) The mean flow observed in (x*,y*,z*) has structure similar to that of a 
turbulent boundary-layer flow over a smooth flat plate. 

(c) The development of the surface drift current tends to release a portion of the 
wind stress so that the current-supported wind stress is smaller than that supported 

( d )  The production of the wave-associated Reynolds stress -@(y*) is mostly 
conducted at the vicinity of the interface where the value of -% was found to 
increase rapidly. 

( e )  The measured wave-induced velocities and wave-induced turbulent Reynolds 
stresses indicate that an eddy-viscosity relationship exists between them. 

(f) The eddy viscosity for the wave-induced flowfields is dramatically modified by 
the propagating behaviour of the wave. 

Based on the results of I and with the aid of the pressure data of Yu, Hsu & Street 
(1973), Hsu, Hsu & Street (1982) then estimated the complete momentum and energy 
budgets of the air-water interface coupled system. They found that the wave receives 
more than 90 % of the total energy transfer across the interface while the waveform 
supported only about 44 yo of the total momentum transfer across the interface, under 
those laboratory conditions. The most significant result was the experimental 
confirmation of the exact expression for the momentum transfer to the wave, i.e. 

by a smooth flat plate. - 
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where @ is the wave-induced pressure, Tii (i, j = 1,  2) is the wave-induced turbulent 
Reynolds stress, p is the air density and 8, is the viscous sublayer thickness. However, 
the momentum transfer by Tl1 is practically zero because the phase of Tll approaches 
Oo when y* + 8, and the momentum transfer by T12 (last term of (1.3)) is only about 
10 % of gZw. Hence the wind turbulence contributes directly only a negligible amount 
of the wind momentum supported by the wave. From the energy budget, they also 
found that the energy received by the wave is mainly delivered by the wave-induced 
pressure and that the direct energy input by the wind turbulence is insignificant. 
However, the momentum and energy transfer by the wave-induced pressure is found 
to be considerably larger than that predicted by Miles' (1957) theory, implying that 
the turbulent effect is more likely to modify the wave-induced flow structure to 
enhance the transfer by the wave-induced pressure. 

As the above results were for U,/c  = 1.54, it becomes obvious that in order to 
obtain a more systematic insight to the structure of the wave-induced flow, 
observations of the flowfields a t  different U,/c  have to be made. In  this paper, we 
report the results of the wind measurements at U,/c  = 0.88, 1.10, 1.36 and 1.87 
obtained by changing the wind speeds while practically maintaining the same wave 
conditions as in I .  The structure of our text is as follows. In  $$2 and 3 we review briefly 
the decomposition techniques and the experimental conditions that are essential to 
the complete presentation of the present work. The experimental results are then 
presented and discussed in $4, using our findings of I as guidelines. As implied from 
these experimental results, the general structure of the wave-induced flow is 
developed and discussed in $5 based on the velocity scales and lengthscales of the 
wave, the boundary-layer wind and the critical layer. The mechanism for the 
production of the wave-associated Reynolds stress -z is also examined in $$4 and 
5, but the balance of the momentum and energy budget is reserved for a separate 
paper. Finally, $6 offers a summary of our conclusions. 

2. Averaging and decomposition 
In  a turbulent flow over an organized progressive water wave, a flow quantity g ,  

which can be the velocity ut = (u, v ,  w), the pressure p or the turbulent Reynolds 
stress u;ui, etc., usually contains a mean-flow quantity, a wave-induced quantity and 
a background turbulent-fluctuation quantity. To obtain the mean-flow quantity, a 
time average is defined as 

1T 
G(x) = ~ ( x )  = lim { g(x, t )  dt, 

T+m -1T 

where x is a vector representing the position during data sampling. The notation G 
is used when g represents a single-lettered ~ quantity such as u, v and p etc. ; g is then 
used for a product quantity such as u; u;. To eliminate the turbulent fluctuation, a 
phase average is defined as 

where 7 is the wave period. Now, the wave-induced flow quantity 9" can be found from 

(2.3) 
5-2 



126 C.-T. Hsu and E .  Y .  Hsu 

urn u* 
Run (m/s) (cm/s) C ka U m l G  4% k4l kYF 

1 1.37 4.3 13.6 0.106 0.88 36.3 0.015 00 

2 1.72 5.6 11.3 0.107 1.10 27.9 0.012 0.47 
3 2.12 7.3 9.9 0.105 1.36 21.4 0.0088 0.085 

2.40 8.5 8.6 0.107 1.54 18.2 0.0076 0.034 
2.92 11.0 7.1 0.115 1.87 14.2 0.0057 0.012 4 

I t  

7 The run of Hsu et ul. (1981) referred to as I. 

TABLE 1. Experimental conditions of the wind and the wave 

As a result, g is decomposed into 

g = g+g"+g', (2.4) 

where g' is the turbulent-fluctuation quantity. The general properties of the time and 
the phase averages can be found in Hussain & Reynolds (1970). 

In  (2.1) and (2.2), the position x has to be specified during the course of the 
averaging. In  fixed-frame analyses or measurements x = (x, y, z )  ; in this study 
x = (x*, y*, z*) ,  where (x*, y*, z * )  is the transformed wave-following frame defined 
by (1 .1)  and (1.2). Here (x*, y*, z * )  remains constant during averaging, although the 
actual physical position of x changes with time. The advantages of using the 
transformed wave-following frame in representing the interface flow system with 
surface waves were discussed in detail in I. 

It is noted that, in the present treatment, we transform only the coordinate system 
but not the flowfields. Hence, the velocity fields as well as the turbulent and viscous 
stresses are expressed in the component directions of the Cartesian coordinate system, 
although their variations are described by (x*, y*, z* ) .  We also assume the phase- 
averaged airflow to be two-dimensional and stationary; hence g = g(x*, y*) and 
@ = @(x*, y*, t * ) .  We assume that the dependence of gon x* is mainly of boundary-layer 
type and is much weaker than the dependence of on x* resulting from the surface- 
wave undulations. For the boundary-layer flow we also have ag/ax* 4 ag/ay*. 

3. Experiments 
The experiments were performed in the Stanford Wind, Water-Waves Research 

Facility. The experimental conditions were practically the same as those in I, except 
for the difference in the wind speeds, viz the mechanically generated water wave is 
of 1 Hz; the height of airflow is 0.97 m ;  the water depth is about 1 m to  ensure a 
deep-water wave, and the data-taking station was located at x = 13 m from the air 
inlet of the channel. For the present measurements, four runs with different mean 
free-stream wind velocities Urn at 1.37, 1.72, 2.12 and 2.92 m/s were made. The 
reduced wave amplitudes for the four runs were found to differ slightly. The values 
of U ,  as well as of U,/c  and lea (the wave slope) are listed in table 1 .  For reference, 
the corresponding values from I are also recorded in table 1.  

As in I, the air-velocity components in the x- and y-directions were measured by 
a cross hot-film probe operated in the wave-following frame using a wave-follower 
system ; the wave displacement was measured by a capacitance-type wave-height 
gauge, and the probe calibrations and the data acquisition and reduction were 
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performed digitally in an HP2100A minicomputer. The details of these systems as 
well as their associated uncertainties were discussed in I and are not elaborated upon 
here. 

4. Experimental results 
4.1. Format of presentation 

The flow quantity is generally presented in profile distribution as a function of y*. 
The profiles are usually in non-dimensional form; typically U ,  and UZ, are used to  
normalize the velocities and the Reynolds stresses respectively, and the ordinate y* 
is normalized by k .  However, when interpretation in wall coordinates is required, the 
friction velocity u, and the viscous length scale v/u, are used for normalization. The 
wave-induced quantity is expressed in terms of the amplitude and phase distributions 
given by 

ij(x*,y*,t) = 101 cos(kx*-wt+Bg)+harmonics, (4.1) 

where is the amplitude and Bg is the phase-lag angle of the fundamental mode. 
The phase lag is with respect to time using f as a reference, i.e. f is represented by 

f(x*, t )  = a cos (kx*-wt )  + harmonics, (4.2) 

where w is the wave frequency. 

4.2. Mean JlowJelds 
As followed from I, the mean horizontal velocity profiles measured in this study fit 
well the wake-modified log-linear distribution given by 

(4.3) 

Here k,  = 0.40 is the von Karman constant, v is the air kinematic viscosity, C is the 
profile constant for surface roughness, W, is the wake parameter, S is the boundary- 
layer thickness and W(y*/S)  is the wake distribution, which can be approximated 
by (Hinze 1975) 

w(f) = 1-cos-. "Y * 
6 (4.4) 

While W, and 6 are found to be almost the same as those of I and are not sensitive 
to the wind speeds, the values of u* and C are found to depend strongly on the wind 
speeds. The values of u* and C as well as the wind/wave coupling parameter c/u, 
are given in table 1 ,  together with the results obtained in I. The consistence between 
this study and I is obtained. The measured velocity profiles in terms of the wall 
coordinates u+ = U / u ,  and y+ = y*u*/v are shown in figure 1. The drag coefficient 
C, defined by C, = (u*/ is plotted against the Reynolds number U ,  x/v based 
on the wind fetch x in figure 2. Consistency among the results of this study, I and 
Yu et at. (1973) is found. 

Since u$ denotes the wind stress supported by mean surface (see Hsu et al. 1982) 
and C is the parameter to  indicate the surface roughness condition, figure 2 indicates 
that the surface drag of the air-water interface a t  the low wind speeds of this study 
is lower than that of a smooth flat plate. This behaviour is also indicated by the higher 
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FIGURE 1 .  The mean horizontal velocity profiles in the wall 
coordinates u+ = U/u, and y+ = y*u,/v. 
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FIGURE 2. Wind-drag coefficient C, as a function of Reynolds number U,x/v. 0,  Yu et al. 
(1973); ., Hsu et al. (1981); A, this experiment. 

! 

values of C, since C = 5.5 for a smooth flat plate and decreases monotonically with 
increasing surface roughness. The air-water interface a t  the low wind speeds 
apparently behaves as a supersmooth surface as described by Csanady (1974), who 
demonstrated that the field measurements by Portman (1960) and Sheppard, Tribble 
& Garrett (1972) can have values of C as high as 30. The existence of the surface drift 
current seems to modify the wind velocity profile to have higher C by releasing 
a portion of the wind stress. This leads to lower u* for the interface flow, and 
consequently the value of C is higher. 

As the mean flow follows basically the waveform and the interface condition is 
aerodynamically smooth, we expect that there exists a thin viscous sublayer 
undulating with the waveform. The thickness 8, of the viscous sublayer is determined 
by S,u,/v = 10 (Phillips 1977, p. 128); the non-dimensional values of k8, are given 
in table 1. Note that k8, 6 ka, i.e. the thickness of the viscous sublayer is much 
smaller than the wave amplitude. 
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FIQURE 3. Profiles of the wave-induced horizontal velocity C: (a) amplitudes; (b) phases. 

4.3. Wave-induced $ow$elds 
The main objective of this study is to understand the structure of the wave-induced 
flow fields, knowing the structures of the mean wind and wave fields. Apparently, 
the wave-induced flow is dependent on the coupling parameters between the wind 
and the wave; these parameters are determined by the relative length scales and 
velocity scales of the wind to the wave. I n  this section, we present only the general 
characteristics of the wave-induced flow as obtained from the direct measurements, 
while the way in which the structures of the wave-induced flow vary with these 
coupling parameters is discussed in $5. 

4.3.1. Wave-induced velocities. The amplitudes and the phase angles of the wave- 
induced velocities 4 and v' are shown in figures 3 and 4. Before we examine the detailed 
features o f 4  and 5, it  is useful to  notice that for the four runs of U,/c = 0.88, 1.10, 
1.36 and 1.87, the condition for the wave-induced flow ranges from entirely below 
a critical height a t  U,/c  = 0.88 to  almost entirely above the critical height at 
U,/c = 1.87. The critical height y,* is located a t  U(y,?)-c = 0. Without loss of 
generality, the case U ,  < c can be regarded as the critical height being a t  y,* = 00. 
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FIGURE 4. Profiles of the wave-induced vertical velocity C :  (a )  amplitudes; ( b )  phases. 

The values of the critical height yz are determined from the measured mean-velocity 
profiles, and the non-dimensional results ky,* are listed in table 1. In the following, 
we examine the wave-induced flow characteristics in two regions: one is near the 
interface below ky* = 0.5 where the mean shear and the turbulent intensity are high 
and the mean turbulent Reynolds stress is almost constant, the other is near the free 
stream above ky* = 0.5 where the turbulent shear is less important. 

Near the interface, we find from figures 3 and 4 that the amplitudes ISl/U, are 
much larger than the amplitudes lGl/Um when U,/c  = 0.88 and 1.10, especially as 
ky* approaches the interface ; however, the opposite situation happens when 
U , / c  = 1.36 and 1.87. Note that the flow in this region is below the critical height 
when U , / c  = 0.88 and 1 .lo, and is mostly above the critical height when U,/c = 1.36 
and 1.87. Because the amplitude of 5 is related very closely to the undulation of the 
mean streamlines as observed in a frame x,* = x* - ct travelling at the wave celerity, 
the above results suggest that the mean streamlines (phase-averaged streamlines) 
below the critical height follow the waveform very well, while those above the critical 
height are affected strongly by the critical layer. The implication is that if there exist 
cat's-eye patterns in the flow of these higher winds speeds, the centre of the cat's-eye 
is probably located in the troughs near the leeward side of the wave. The phase angles 
13s as shown in figure 4 ( b )  remain quite constant near the interface when U,/c = 0.88 
and 1.10. The variation of 8, near the interface increases when U,/c  increases. 
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However, 8,- approaches 270' for all runs when ky*+O, which appears to be 
consistent with the interface boundary condition of v". On the other hand, the trend 
in the variations of 8, with U,/c  near the interface is more subtle than that of 86. 
The values of OC do not approach a fixed value when ky*+O; this behaviour is 
considered to  be a consequence of the Stokes layer and the critical layer which is 
discussed later. 

We now examine the wave-induced flow characteristics near the mean free stream 
where the mean velocity gradient (shear effect) and the turbulent mixing are small. 
Near the free stream, the wave-induced flow is expected to behave as a potential flow. 
This had been confirmed by our earlier measurements of I and is also indicated by 
the distributions of ii and v" shown in figures 3 and 4. Several features of 4 and v" near 
the free stream are worth noting: (i) the amplitudes of Itil/U, and lfil/U, are of 
practically the same magnitude ; (ii) the phase angles 8, and 8,- are expected to remain 
almost constant a t  different Icy* - this situation is probably more true for 8, which 
is less sensitive to the effect of the misalignment between the phase-averaged 
streamlines and the wave-following coordinates where y* = constant; (iii) the phase 
angles 8, and 8,- for different values of U,/c  depend on the undulation of the 
phase-averaged streamlines near Icy* = 0.5 before transmitting into the shear-free 
region near the free stream; (iv) the phase difference between 8, and O8 becomes 90' 
when ky* becomes large. 
- The values of 12 and v" in the proximity of the interface are of great interest since 

-4v" at y* = So represents a good estimate of the momentum flux supported by the 
wave. The interface boundary conditions for ii and v" under the influence of the surface 
drift current U, are given to O(ka) by (Phillips 1977, p. 95) 

ii(x*, 0, t)  = k(c+ U,)  r", ( 4 . 5 ~ )  

a+ aq 
v"(x*,O,t) = -+ u - 

at O ax*' 
(4.5b) 

Because c 9 U,, the estimate of U, is not crucial in (4.5); for the present study, we 
take U, = 0.55u, based on the measurements of Wu (1975). The amplitudes and the 
phase angles of 4 and v" a t  y* = 0 as determined by (4.5) are given in table 2. Since 
we have always 8, = 0' and Be = 270' a t  y* = 0, we find -% = 0 at y* = 0 to O(ka)2,  
which is a necessary condition if the interface represents a streamline, as demonstrated 
by Hsu et al. (1982). For comparisons, the values of Itil/U,, lal/U,, 8, and 6,- when 
y* -to are extrapolated from figures 3 and 4; they are listed in table 2, together with 
the values of -%/u2, when y*+O as calculated by -z = -+,I&[ 141 cos (0,-8,-). 
We want to emphasize that the extrapolation by ky*+O yields the inviscid limit 
outside the viscous sublayer when kS, is very small, not the limit value at ky* = 0, 
i.e. our extrapolation results represent the values a t  y* = 6,. We also notice that the 
value for la// U ,  when U,lc = 1.87 cannot be extrapolated directly from the profile 
shown in figure 4. Because the value of lfil/U, is expected to increase rapidly when 
ky* passes below the critical layer and approaches the interface, as suggested by the 
other three cases of U,/c  = 0.88, 1.10 and 1.36, the value of ISl/U, at y* = So when 
U,/c  = 1.87 is determined alternatively by indirect extrapolation based on the 
parameter U,/c  using the values of lfil/U, at y* = 6, of U,/c  = 0.88, 1.10, 1.36 and 
1.54. From table 2 i t  is clear that the values of ii and v" at y* = 0 are different from 
those of y* -+O as anticipated. 

To obtain more insight into 4 and v" near the interface, we review the predictions 
based on the inviscid quasi-laminar model of Miles (1957). The analysis of Benjamin 



132 C.-T. Hsu and E.  Y .  Hsu 

(a )  Calculations from the interface boundary conditions (at y* = 0) 

14 -x 102 14 - x  102 
Run urn 8, urn 0, 

1 12.2 0' 11.9 270' 
2 9.9 0' 9.5 270' 
3 7.9 0' 7.5 270' 

7.2 0' 6.7 270' 
6.4 0' 5.9 270' 5 

IS 

(b )  Extrapolations from figures 3 and 4 (at y* = So) 

-x 102 
- 

- cij 
- X  104 14 -x 1 0 2  

14 
Run urn 6, urn 0, uz, 

1 2.4 1 80° 8.0 270' 0 
2 1.6 142' 5.6 270' 2.8 
3 5.2 100' 3.1 270' 7.9 

8.0 89' 2.4 270' 9.6 
11.2 63' 1.1 270' 5.5 

IS 
5 

(c )  Predictions from the inviscid quasi-laminar model of Miles (1957) (at y* = So) 

1 8.4 180' 8.4 270' 
2 6.0 180' 6.0 270' 
3 3.9 1 80' 3.9 270' 

2.9 1 80' 2.9 270' 
1.6 1 80' 1.6 270' 5 

S The run of Hsu et al. (1981) referred to as I. 

TABLE 2. Amplitudes and the phase angles of .ii and v" in the proximity of the interface 

IS 

(1959) showed that to the first approximation the stream function is constant along 
y* = constant (see also Phillips 1977, p. 130). Hence we find 

4 = - ka(c - U )  e-ky* cos (kx* - ot), 

6 = ka(c - U )  e+y* sin (kx* - wt )  

( 4 . 6 ~ )  

(4.6b) 

as observed in the wave-following frame. The interface boundary condition is 
apparently satisfied by (4.6) for 17, but not for 4. This amplifies the significance of 
the surface orbital velocity and of the Stokes layer at the interface to the determination 
of tZ outside the viscous sublayer. The predictions of 4 and v" at y* = 8, obtained from 
(4.6) by taking the value of U at y* = 8, to be U,+ lOu, are listed in table 2. We 
find the inviscid-model predictions agree reasonably well with the extrapolated values 
for l6l/U,. The systematically slightly lower values in the extrapolated results may 
be because the extrapolation neglected the curvature effect in the profiles of lt?l/Um 
shown in figure 4. It is interesting to observe that the extrapolated values of 8, occur 
systematically between the interface-condition 8, = 0' and the inviscid result 

The inviscid approximation (4.6) does not provide - a useful mechanism for the 
momentum transfer to the wave since (4.6) gives -6v" = 0. This i8 because the 
components of 4 and v" that produce a non-zero correlation are neglected. These 
components are mainly produced owing to the existence of a critical layer near yz. 
The profiles of .ii and v" as shown in figures 3 and 4 are affected not only by the critical 

8, = 1800. 
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8 [ " " " " " , ' " ' ' ,  

%? = 0.88 0 

1.10 0 
1.36 h 
1.87 0 

FIQURE 5. Profiles of the wave-associated Reynolds stress -a as normalized by Urn. 

layer, but also by the turbulent mixing. When the critical height is high as in the 
cases of U,/c = 0.88 and 1.10, the critical-layer effect is less significant than the 
turbulent mixing; the data of figures 3 and 4 seem to indicate that the turbulent 
mixing has little effect on the phase-angle distributions, although its effect on the 
amplitude of .ii and v" is substantial. On the other hand, when the critical height is 
low as in the cases of U,/c = 1.36 and 1.87, figures 3 and 4 seem to indicate that 
the critical-layer effect is significant and may become dominant over the effect of 
turbulent mixing. However, this does not imply that the turbulent mixing is 
insignificant. Turbulence may play an indirect but very important role in changing 
the structure of the critical layer since y: is located in the very energetic turbulent 
region. 

4.3.2. Wave-associated Reynolds stress. The distributions of the wave-associated 
Reynolds stress -%(y*) as normalized by VZ, are presented in figure 5.  It is more 
instructive to examine the profiles of -% by decreasing ky* from the free stream 
since this reveals how the wave-associated Reynolds stress is produced in the 
boundary layer. From figure 5,  it is clear that most of the wave-associated Reynolds 
stress is produced near the interface, say, below ky* = 0.3. We also find that, when 
ky*+O, the values of -%/U& as shown in figure 5 tend to approach those at y* = So 
given in table 2. As the profiles shown in figure 5 contain the contributions not only 
from the fundamental mode but also from the harmonics, the above result seems to 
suggest that the contribution due to the harmonic components is negligible. 

In figure 5 ,  all the profiles indicate that -%decreases to a negative minimum from 
an almost-zero value near the free stream, and then increases rapidly toward a 
positive value when ky*+O. For U,/c = 0.88 and 1.10 where the critical height is 
high, these minima occur below the critical height and approximately at ky* = 0.13 
and 0.10 respectively. On the other hand, when the critical height is low, they occur 
above the critical height and approximately at ky* = 0.54, 0.35 and 0.20 for 
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U,/c  = 1.36, 1.54 and 1.87, respectively (see also figure 7 of I). When U,/c = 0.88, 
the wave-induced flow is probably only affected by the viscous effect a t  the interface 
and the turbulent mixing in the boundary layer since the critical-layer effect is 
negligible. The Stokes layer a t  the interface due to viscous effects has a lengthscale 
characterized by l/b, where p is given by /3 = (w/Zv)+, if the turbulent effect is 
presumed to be negligible. For this study, /3 = 0.443 mm-l and k / P  = 0.0091. The 
existence of the Stokes layer results in the oscillatory behaviour in ti and -a. The 
maxima or the minima of -a then occur a t  by* = nn+@ depending on whether 
n are positive even or odd integers respectively, although these maxima and minima 
decrease rapidly with increasing y*. This would imply that the first maximum is 
located a t  ky* = 0.0071 and the first negative minimum is located a t  ky* = 0.036. 
However, the upper portion of the Stokes layer is strongly affected by the turbulent 
mixing since the viscous sublayer of the mean flow is so thin. The simple eddy-viscosity 
model suggests that  the turbulently modified Stokes layer may have a characteristic 
lengthscale based on Pt = [w /2 (v+v t ) ]4 ,  where v, = k,u,y* is the eddy viscosity. If 
to the first approximation the eddy mixing is assumed as a local process, the first 
maximum and negative minimum are then located a t  j,”*b, dy* = in and in. Using 
u* = 0.043 m/s for U,/c = 0.88, we find these first maximum and negative minimum 
occur a t  Icy* = 0.011 and 0.12 respectively. It is interesting to  see that the value of 
0.12 agrees reasonably well with our observation of 0.13. Hence the effect of 
turbulence seems to diffuse the highly oscillatory nature of the viscous Stokes layer 
into the boundary layer through the turbulent mixing. 

When the wind speed increases from U,/c  = 0.88 to 1 .lo, the critical height moves 
from ky,* = 00 to 0.47. Flow below the critical height is slightly affected by the 
existence of the critical layer near y:. The vertical diffusion of the viscous Stokes layer 
by turbulent mixing is compressed by the critical layer; hence the location where the 
first negative minimum occurs is lower than that of U, /c  = 0.88. In addition to this 
effect, the wave-associated Reynolds stress is produced in the critical layer as a result 
of the wind-wave interaction, as first demonstrated by Miles (1957). It is interesting 
to see that in figure 5 the wave-associated Reynolds stress for U,/c = 1.10 below 
the critical layer is higher than that for U,/c  = 0.88 by an almost constant amount 
of 2.8 as estimated in table 2 ( b ) .  This seems to be consistent with Miles’ (1957) theory. 
In  other words, our observed -a shown in figure 5 for U,/c  = 1.10 seems to behave 
as the additive results of the wave-associated Reynolds stresses due to the turbulently 
diffused Stokes layer and the critical layer. 

When the wind is so high that the critical layer is located at the lower portion of 
the turbulent boundary layer and near the interface, the wave-associated Reynolds 
stress below the critical layer as produced by the critical layer is large; this implies 
the existence of a component in d which is very large and is 180O different in phase 
from 5. This amplifies the significance of the wave nonlinear effect in the critical layer 
since the location of the critical height is greatly modified by 6. The flowfield between 
the Stokes layer and the critical layer is very complicated as these two layers are so 
close to each other; however, the flowfield above the critical layer is now over most 
portions of the turbulent boundary layer and becomes somehow more similar to a 
turbulent flow over a stationary wavy solid boundary. It should be noted that the 
flow over a solid wavy boundary represents the case of U,/c  = 00 and ky,* = 0. Under 
this extreme situation, the critical layer attached a t  the wavy boundary is very thin 
in comparison with the amplitude of the waveform. Hence the streamlines above the 
critical layer are expected to bend over along the wavy solid boundary. The inviscid 
theory then suggests that  dZi = Oo and 8, = 90’ as inferred from (4.6), where c is set 
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to be zero, When c is positive and non-zero as for water waves, the critical height 
y: is located above the interface depending on U,/c. The magnitudes of 12 and v" near 
the free stream are probably scaled with U ,  -c ,  but the phase of ii and v" may depend 
on the upper boundary of the cat's-eye pattern. The undulation of this upper 
boundary is the combined result of the undulations of the critical layer (cat's-eye 
displacement) and of the critical height (y,* = constant). The fact that  the cat's-eye 
is located in the lee of the wave near the trough tends to shift Be near the free 
stream from 90' to 270°, and simultaneously 8, from 0' to 180' in the downstream 
direction, as c increases from zero. These are indicated by the observed ii and v" shown 
in figures 3 and 4. The effect of the critical layer is to redistribute the mean vorticity 
field near the critical height so that the flowfields below and above the critical layer 
can have a smooth transition. As the critical height is located in the energetic 
turbulent region, the critical layer is probably very diffusive, very thick and highly 
nonlinear. Since when U, /c  is large the critical height is low, the contraction of the 
cat's-eye on the flowfield below the critical layer is very strong. A component of 6 
in phase with the wave slope as a result of this contraction then may become 
dominant in ii near the interface. This may lead to the observed 8, near the interface 
as shown in figure 3 for U,/c = 1.36 and 1.87. The distributions of Oa and OG are then 
consequences of the smooth transition from the values near the interface to those near 
the free stream by the critical layer. As a result, the value of -z has a positive 
maximum near the interface, but outside the viscous sublayer and decreases to a 
negative minimum at the height where 0, x O,, and then approaches zero when ky* 
aproaches the free stream. It should be noted that the location of the negative 
minimum for the case of U,/c = 1.36 and 1.87 is scaled with - the critical height y,*. 
Hence when U,/c  increases, the location of minimum -iiC moves toward the 
interface. 

4.3.3. Wuve-induced turbalent Reynolds stresses. The perturbation of the wind 
turbulent Reynolds stresses by the wave is described by P6,, which from (2.3) is defined 
as __ 

7. .  21 = (u;u!)--u'u!. 3 6 3  (4.7) 

The scheme used to  reduce Ftj was described in I. The profiles for the amplitude l f i j 1  
and the phase angle OPtl are shown in figures 6 , 7  and 8 for Fll, P12 and Pg2 respectively. 
The phase jump of 180' a t  ky* = 0.5 when U,/c = 1.87 resembles that observed 
earlier in I ;  however, when U,/c  = 0.88, 1.10 and 1.36, the results of 1 9 ~ ~ ~  shown in 
figures 6-8 do not reveal any phase jump of 180'. As mentioned in I ,  the phase jump 
implies that the wave-induced turbulent Reynolds stresses a t  the phase jump location 
are equal to zero. The oscillatory stresses above and below the phase jump location 
are exerted in the opposite directions. From figures 6-8, i t  is clear that  the 
distributions of OPtj  are very sensitive to  the parameter U,/c except those in the close 
proximity of the interface, where we find that O,,, +Oo,  8,,z+900 and 8,22+Oo when 
ky*+O for all U,/c. The behaviour of these limit values of OPtl when ky*+O bears 
some significance in the interface physics which is discussed later. On the other hand, 
the distributions of IfijI as shown in figures 6-8 seems only to suggest that  the 
amplitudes of Fij  are scaled with the intensity of the mean turbulent flowfield, which 
is large near the interface and decays to zero near the free stream. 

It is clear that most of the distinguished features of the wave-induced turbulent 
Reynolds stresses are demonstrated by the phase distributions Oft,, from which a 
general structure for Pij emerges. It is more instructive to  examine the structure of 
Ttj by observing the flow in a frame moving with the wave celerity, i.e. x,* = x*-ct, 
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and by considering the advection of the wave-induced turbulent perturbations in this 
new frame. We imagine first a turbulent wind over a flat water surface, and then 
introduce the mechanically generated water wave. The wave action in producing the 
wave-induced turbulent Reynolds stresses as a result of contraction on the turbulent 
flowfield commences first in the very proximity of the interface. This wave action 
is relaxed when it penetrates the turbulent boundary layer and then reaches a steady 
state as observed in the x,* frame. In the proximity of the interface, the wave-induced 
turbulent Reynolds stresses are solely dependent on the intensity of the mean 
turbulent field and on the undulation of the surface wave, but not on the parameter 
U m l c .  
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FIGURE 7 .  Profiles of the wave-induced turbulent Reynolds stress Flz: 

(a) amplitudes; (b) phases. 

To delineate this dependence, let us begin with flows of no turbulence. If &x*, y*, t )  
is the vertical displacement of the mean streamlines induced by the surface wave 
motion, the condition of no flow across a streamline requires 

aR an 
<v) = -+(u)-. at* ax* 

When the turbulence is introduced, there is an active component 6' in v' (see Davis 
1974) which describes the coupling between the wave and the turbulence. To the first 
approximation, this active component 6' can be obtained by perturbing the right-hand 
side of (4.8) with turbulent fluctuations u' and h'. This leads to  

(4.9) 

(We derive this concept from Miles (1967), but here we include the component h' to 
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capture the actual flow characteristics better.) The active component C' in u' is related 
to v"' through the perturbed continuity equation in (x*, y*, z * ) ,  i.e. 

(4.10) 

The solution to C' by substituting (4.9) into (4.10) cannot be obtained exactly, since 
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6 is not known a priori. However, when ky*+O we can assume that Ii = f f  (which 
is true from the interface boundary condition and from the inviscid theory) and that 
the lengthscale of turbulence is very small compared with the wavelength of a surface 
wave (which is true near the interface because the lengthscale of turbulence there is 
proportional to y*), so that to first order 3' is found to be 

(4.11) 

The wave-induced turbulent Reynolds stresses Fij in terms of ii' and 5' are (following 
Davis 1974) 

Fti(x*, y* , t )  = (3;u;)+(C;u;), (4.12) 

where 6; = (6 ' ,C ' )  and u; = ( u ' , ~ ' ) .  The substitution of (4.9) and (4.11) into (4.12) 
yields explicitly 

( 4 . 1 3 ~ )  

7 ar" ah' 
T22 = 2u v f--+2v'--3. ax* ax* (4.13 c)  

In  (4.13) the correlations of h' and its derivatives with u; remain to be determined 
from the characteristics of the turbulence. The detail of them is provided in a 
subsequent paper when the closure modelling of Tii and the predictions of the 
wave-induced flow are presented. However, it will suffice here to note that, when 
ky*+O, the first terms on the right-hand side of (4.13a,b) become the dominant 
terms because u" 9 -= z a. Thus suggests that  when Ky*+O we shall have 
Fll x 2u"  ky"andT12 x =af/ax*, i.e. lPlll x 2&7 ka, O,,, z Oo, JP,,J x m k a  z +(t,,l 
and Of12 z 90'. The measured m/U2, in this study is about (5CL70) x lop4; hence, 
weshallexpectJi?,,J/U& z (10-14) x 10-4andJP,,J/U& z (5-7) x 10-4.0urobservations 
of Tij as shown in figures 6 and 7 apparently confirm the above predictions. 

The above derivations indicate that, in the close proximity of the interface, the 
maxima of the wave action are located a t  a fixed phase relative to the surface wave. 
The wave-induced turbulent intensity is mainly produced by compression and 
stretching of the turbulent flowfield by surface undulation so the maximum intensity 
occurs above the crests; on the other hand, the wave-induced shear stress F12 is 
produced by the change in the direction of u' by surface undulation so the maximum 
T12 occurs when the wave slope is maximum. When the wave action penetrates the 
turbulent boundary layer, these maxima to the first approximation are advected by 
the mean velocity U - c .  When U,/c  = 0.88 and 1.10, the boundary layer is mainly 
below the critical height and U - c there is negative ; the advection then tends to shift 
the phase of the wave action into the upstream direction. On the other hand, when 
U,/c  = 1.36 and 1.87, most of the turbulent boundary layer is above the critical 
height and U - c  there is positive; the phase of the wave action is then shifted into 
the downstream direction during its relaxation. For consistence, the phase of Fti as 
shown in figures 6-8 for U,/c  = 1.87 and ky* > 0.5 are shifted by 180°, while the 
amplitudes there are interpreted as negative so that both the amplitude and the phase 
are continuous and smoothly varying a t  ky* = 0.5. 

I n  fact, the above wave-action relaxation process is closely related to the response 
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of turbulence to a varying mean flow. It is well known that the turbulent intensity 
is decreased in an accelerating mean flow. The turbulent boundary-layer flow over 
water surface waves as observed in x,* is regarded as the flow over a series of 
convergent and divergent regions undergoing acceleration and deceleration processes. 
When ky,* is large, the mean flow is in the -x,* direction, so that the deceleration 
process occurs in the windward region (phase-lag angle from 0’ to 180’). Consequently, 
the turbulent intensity (uiu;) (which is insensitive to the mean-flow direction) is 
maximum there. As a result, the shear stress - (( -u‘)v‘) acting in the -x,* direction 
is also maximum there since higher turbulent intensity implies higher shear stress. 
This is equivalent to the condition that (u’v’) has the maximum in the windward 
region. Our observed phases of Fll, F12 and F22 for U,/c = 0.88 and 1.10 apparently 
agree very well with the above arguments. 

When ky,* is very low, the mean flow is in the x,* direction, so that the deceleration 
process occurs in the leeward region (phase-lag angle from 180’ to 360’). Consequently, 
the turbulent intensity (uiu;) and the shear stress -(u’v’) are maximal in the 
leeward. Hence, (u’v’) is maximal in the windward. These are confirmed by our 
observations of Fij for the cases of U,/c  = 1.36, 1.54 and 1.87. The phase jump of 
180’ for the cases of U,/c  = 1.54 and 1.87 then becomes a necessity in order to 
guarantee that the maximum turbulent intensity and the shear stress occur in the 
leeward. The phase jump occurs when the phases of Fll and F22 are 180’ and when 
the phase of F12 is 0’. 

The most significant results of Fij as indicated by figures 6 8  are their pertinent 
relationship to the wave-induced velocities. The comparisons between the phase 
distributions of the wave-induced velocities and the wave-induced turbulent Reynolds 
stresses indicate that the eddy-viscosity-type relation found in I for U,/c  = 1.54 now 
seems to hold for the other U,/c  values of this study. This would imply that the 
relaxation of the wave action in the turbulent boundary layer is governed not only 
by the advection, but also by the turbulent eddy mixing. The eddy-viscosity-type 
relation between iii and Fij is of great significance - its details were examined by Hsu, 
Hsu & Street (1977). 

It is worth noting that the structure of the wave-induced turbulent Reynolds 
stresses as observed in this study is very similar to  the modal structure of an 
eigenvalue problem usually encountered in hydrodynamic stability theory, because 
Fij a t  ky* = 0 and 00 are required to be zero as necessary boundary conditions. While 
when U,/c  = 0.88, 1.10 and 1.36 the distribution of Ftj  along ky* is dominated by 
the first eigenmode, i t  is dominated by the second eigenmode when U,/c = 1.54 and 
1.87, i.e. the amplitudes of Fij change sign in the boundary layer if the phases of Fij 
are regarded as continuous. 

5. Structure of wave-induced flowfields 
I n  $4 we have discussed the behaviour of the wave-induced velocities and the 

wave-induced turbulent Reynolds stresses based on the data obtained in this study. 
Here we attempt to give a more concise but more systematic description of the 
wave-induced flowfields using the characteristic scales of the wave, the wind and of 
their coupling. I n  order t o  do this, we need to  start with the case of zero wind to 
explore the basic scales of the wave-perturbed flowfields and to show the structure 
of the Stokes layer under laminar conditions. Then the wind is introduced, but the 
wind speed is still within the range of U ,  < c .  The characteristic scales of the 
turbulent wind are discussed. The case of U ,  < c represents the simplest first-step 
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coupling between the wind and the wave because the critical height is regarded as 
a t  ky,* = 00, i.e. the critical layer does not play any significant role in describing the 
wave-induced flowfields. The effect of the mean wind and of the turbulence on the 
wave-induced flow as well as on the Stokes layer under this simplest coupling 
condition are discussed. Finally, the wind speed is further increased to the range of 
U ,  > c to produce a critical layer. The lengthscales of the critical height and of the 
critical layer are discussed. The effect of the critical layer on the wave-induced 
flowfields in relation to the energy transfer from wind to wave, the changes in the 
critical-layer structure as influenced by nonlinear process and by turbulent mixing, 
and the interaction between the critical layer and the Stokes layer are examined. The 
discussions given in this section are for an infinitely extended airflow, which are 
expected also to be applicable to the results of this experiment since kH = 4.0, where 
H is the channel-roof height of this experiment. 

5.1. Wave perturbations in quiescent air 

When there is no wind, the inviscid solution for the wave-induced velocities is given 

( 5 . 1 ~ )  5 = -kace-ky* cos(kx*-wt), 

v" = kac e-ItY* sin (kx* - wt). (5.1 6 )  

Equation (5.1 a )  does not satisfy the interface boundary condition, which is given by 
.ii(x*,O,t) = kac cos (kx*-wt) according to the orbital velocity of the surface wave. 
Hence, the viscous effect is significant in the proximity of the interface. The viscous 
effect results in a Stokes layer near the interface and the solutions to the wave-induced 
velocities are modified to 

( 5 . 2 ~ )  

- 2ikac ( i) [e-pY* cos (kx* - wt + By* - in) - cos (kx* - ot -&r)], (5.2 b)  

where /3 = (w/2v)i is the reciprocal of the Stokes-layer thickness (Phillips 1977, p. 45). 
From (5.2), i t  is clear that  the change in 5 by the viscous effect is drastic, but that 
in v" is only slight because k / P  is small. For this experiment k / p  = 0.0091. The 
magnitude of -%then is oscillatory along y* and to the first approximation is given 

by 

.ii = -kace-kY* cos (kx*-wt)+2kace-pY* cos(kx*-wt+j3y*), 

v" = kac e-ky* sin (kx* - wt) 

- 
-.iiv" = (kac)Ze-(k+P) Y* sinpy*, (5.3) 

by 

which has maxima and minima at By* = nn++n, as mentioned in $4.3.2. 
It is clear that for this quiescent-air case the wave-induced flow is characterized 

by three lengthscales, i.e. the wavelength k-l, the wave amplitude a and the 
Stokes-layer thickness p-'. The wavelength is a global scale which characterizes the 
extent of the wave-induced flowfield; the wave amplitude and the Stokes-layer 
thickness are local scales which characterize the undulation as well as the variation 
of the wave-induced flowfield near the interface. Because k /p  4 ka for this study, the 
Stokes layer is a very thin layer undulating along the wave surface. 

5.2, Wave perturbations in light wind ( U ,  < c) 

When a turbulent wind is introduced, the wave perturbations as described in $5.1 
are strongly affected by the mean and the turbulent velocities. The wind flowfield 
has a global scale of the boundary-layer thickness 8, which characterizes the extent 
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of mean-velocity variation and turbulent mixing, and a local scale of the viscous- 
sublayer thickness So (=  lovlu,), which characterizes the wind shear and the lower 
limit of turbulent mixing near the interface. The coupling between the wind and the 
wave depends not only on the parameters formed by the lengthscales of the wind and 
the waves, but also by the parameter U , / c ,  which determines the critical height and 
the critical-layer thickness. For this study, E6 M 1 .O ; hence the wave-induced flow is 
expected to be affected by the wind profile. From the values of kr3, given in table 1, 
we also expect that the upper portion of the Stokes layer is affected strongly by 
turbulent mixing. In  this subsection, we discuss only the case of U ,  < c, i.e. when 
the critical height is very large so that the effect of the critical layer is negligible. 

We first consider the effect of the mean wind and then attempt to examine the 
influence of turbulent mixing. When the effect of turbulence is ignored, the analysis 
is quasi-laminar. The inviscid solution to the wave-induced velocities to the first 
approximation, according to Miles (1957), is given by (4.6), which appears to be a 
multiplication of (5.1) by a factor of 1 - U / c .  Hence the mean wind velocity under 
the situation of U ,  < c tends to cause the wave-induced flowfields to decay much 
faster in the boundary layer. On the other hand, the viscous friction-layer solution at 
the interface, according to the analyses of Benjamin (1959), is expressible in terms of 
Airy functions, which is a result of the modification of the Stokes layer by the mean 
shear of the wind profile at the interface. The effect of the surface wind shear on the 
Stokes layer is quantified by the Tietjens function D( - 2,) defined conventionally in 
hydrodynamic stability theory (Lin 1955). The argument 2, defined by (kUh/u)! c/Uh, 
where Uh is dU/dy* a t  y* = 0, is the parameter that measures this mean shear effect. 
For aerodynamically smooth turbulent-velocity profiles, Uh = u?Ju. Hence, the 
parameter 2, can be expressed as 

(5.4) 

where R, = c / k u  = 2 ( / ? / k ) 2  is the wave Reynolds number. I n  fact, the surface friction 
layer behaves as if there were virtually a critical layer with thickness of order 
(kUh/u)+ located a t  y* = c/Uh. The parameter 2, then denotes the distance of the 
interface from this virtual critical layer, using the critical-layer thickness as a 
measure. It should be noted that the actual critical layer may be located much higher 
than c/Uh, or even may not exist. We also noted that the surface friction layer will 
reduce asymptotically to the Stokes layer if Z0+ 00. For this reason, we shall refer 
to this surface friction layer as a ‘modified’ Stokes layer. The modified Stokes layer 
has a thickness of order /?-’ if 2, is very large and of order (kUh/u)+ if 2, is small. 
For better understanding of the conditions of this experiment, the values of kc/Uh, 
k(kUh/u)-t and 2, are listed in table 3. Since 2, shown in table 3 is not very large 
(say greater than 8 as cited by Benjamin 1959), the effect of the surface mean shear 
on the Stokes layer is considerable. However, as shown by Benjamin, this does not 
provide any significant mechanism for the energy transfer from wind to  wave. 

We now examine the effect of turbulence on the wave-induced flow. Intuitively, 
the diffusion due to turbulent mixing is expected to make the inviscid wave-induced 
velocity profiles given by (4.6) have a more uniform distribution in the boundary layer 
with a more rapid change near the interface. The quasi-laminar analysis using the 
logarithmic mean-velocity profile U rather than a laminar profile provides the first 
account of this mixing effect. Further account of this effect requires the inclusion of 
the wave-induced turbulent Reynolds stresses in the wave-perturbation equations. 
The first test ground for the closure modelling of the wave-induced turbulent 
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Reynolds stresses should probably be on the condition of U ,  < c, since the flow is 
not complicated by the existence of a critical layer. However, in view of our 
observations of .ii, and Fij shown in $4, a simple eddy-viscosity model may be able 
to provide reasonable results. 

The effect of turbulence on the modified Stokes layer is more subtle, partially 
because there are no data available for this layer. The comparisons of the values of 
kc/Uh and k(kUh/v)-i  shown in table 3 with the values of k8, shown in table 1 indicate 
that the upper portion of the modified Stokes layer is strongly influenced by 
turbulence. The turbulent diffusion tends to make the Stokes layer penetrate deeper 
into the boundary layer. The value of /3 then can probably be replaced by 
pt = [w /~ (v+v , ) ]~ .  Equation (5.3) for -a for the case of U ,  < c may be modified 
into 

-a = A,(kac)2 cup( -ky*+jy*/3tdy*) 0 sin ( s,"'ptdy*), 15.5) 

where A ,  is an amplification factor accounting for the effect of the mean flow.? For 
U,/c  = 0.88, we find from (5 .5)  that  the first negative minimum of -% occurs a t  
ky* = 0.12, as mentioned in $4.3.2, and the corresponding value of -%//urn there 
is -4.5 x lo-* if we take A, = 1.5. It is noted that the relevant parameter for the 
effect of turbulence on the Stokes layer is R$(c/u*), which measures the thickness 
of the viscous sublayer relative to the Stokes layer, i.e. the extent of the upper portion 
being affected by turbulent diffusion. 

5.3. Wave perturbations in large wind ( U ,  > c )  
When U ,  > c, there is a critical height where U(y:) = c .  In  the moving frame x,*, 
where the waveform a t  the interface is steady, the flow above y: moves downstream, 
while that below y: and above the interface moves upstream because the mean 
velocity is presumed to increase monotonically. This leads to the existence of a critical 
layer a t  y: to smooth the discontinuity in the flow vorticity a t  y:. The extent of the 
critical layer in affecting the wave-induced flow then depends on the structure of the 
critical layer. Since y: measures the location of the critical layer in the turbulent 
boundary layer, one's first intuition is to regard it as a global scale. On the other hand, 
the critical-layer thickness is then regarded as a local scale. Both lengthscales are 
dependent on the dynamic coupling parameter U,/c. 

For an aerodynamically smooth mean-velocity profile as encountered in this study, 
the critical height located in the logarithmic region is determined by 

y: = -exp[k,,(e-~)]. V 

u* 

Equation (5.6) indicates that the critical height decreases exponentially with 
decreasing c/u,. Hence the regime below the critical layer shrinks rapidly from the 
one comparable to the boundary-layer thickness when U ,  c to that comparable to 
the viscous-sublayer thickness when U ,  x 2c. This is indicated by the values of k8, 
and ky: shown in table 1 .  The wave-induced flows then are of different characteristics 
when y: is comparable to the global scale (the case of U,/c = 1.10) and when y: is 
comparable to the local scale (the cases of U,/c  = 1.36 and 1.87). Before we discuss 
these two different flow characteristics, we shall examine the lengthscale of the critical 
layer. 

t Davis (see his appendix to this paper) has extended our result and provided a more detailed 
analysis of the turbulent Stokes layer, based on the eddy-viscosity model. 
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The existence of the critical layer is to smooth the discontinuity that occurs a t  y,* 
in an inviscid quasi-laminar linear analysis. The viscous effect is significant near y,* 
if we presume no turbulent mixing and that the wave perturbation is linear. 
According to  Miles (1959), the thickness of the critical layer as produced by viscous 
effects is given by 

i 
8, = (&) 3 (5.7) 

where U i  is the value of dU/dy* at y:. The values of kS, for this study and I are 
listed in table 3; they are small compared with the boundary-layer thickness. The 
effect on the viscous critical layer due to the existence of the interface is measured 
by the parameter 2, defined as y,*/S, ; the values of 2, are also listed in table 3. As 
discussed earlier for the mean-flow shearing effect on the Stokes layer, we expect that 
the effect of the interface on the viscous critical layer is negligible if 2, is larger than 
8. However, the role of viscous diffusion may be taken by turbulent mixing since the 
critical height is in the energetic turbulent region. The thickness of the turbulently 
modified critical layer, say Set, under the linear analysis may still be given by (5.7), 
except that  u is now replaced by the eddy viscosity ut = k,u, y* a t  y,*. The values 
of kS,, for this study are given in table 3, together with the values of Z,, = y,*/SCt. 
Apparently, the turbulent critical layer is much thicker than the viscous critical layer 
and in the case of U,/c  = 1.10 even becomes comparable to  the boundary layer. The 
compression of the flow below the turbulent critical layer due to the interface is 
substantial, especially when U, /c  = 1.87. 

It was Davis (1969) and Benney & Bergeron (1  969) who showed that the nonlinear 
convection due to the wave-perturbed flow can have a role in smoothing the vorticity 
discontinuity a t  y,* . The significance of this nonlinear effect in determining the 
wave-induced flowfield, as well as in enhancing the energy transfer from wind to wave, 
was emphasized by Robinson (1974) and Phillips (1977). The theory of the nonlinear 
critical layer resembles nonlinear hydrodynamic stability theory. According to 
Phillips (1977, p. 122), the thickness of the nonlinear critical layer is given by 

where ISlc is the value of 181 a t  y,* based on an inviscid solution. From equations (7.26) 
and (7.37) of Benjamin (1959), a good approximation to Id[, for a logarithmic 
mean-velocity profile can be found as 

ka( ky,*)2 J,  A ,  u 
"Ic = [ 1 - (ky,*)2 eLYc*J,]~, 

Here A ,  is determined by [dl = A ,  ka( U ,  - c )  ePky* in the free stream and 

J,(ky,*) = 

Jl(ky,*) = f (lnu)2exp(-kky,*u)G(u)du, 

(lnu)2 exp ( -  ky,*u) du, 

with 

(5.9) 

[(lnu)-2-(lnu,)-2]du (u < u,), 

lo  ( u > u , )  
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and u, = exp [k,( U ,  -c)/u,]. The substitution of (5.9) into (5.8) then leads to 
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kS, = 2(ka)d (ky,*)gra Ji, (5.10) 

where 
r = [ l -  ( k ~ : ) ~  eLYc*J1]-' A,. (5.11) 

The values of k6, for this experiment as calculated from (5.10) are listed in table 3 ;  
also included in table 3 are the values of 2, = y:/S,, which measures the effect of 
the interface on the nonlinear critical layer. The values of A ,  as determined from 
the observed profiles of 161 in the free stream (see figure 4) are given in table 3, together 
with the values of r determined from (5.11). Note that r is larger than the value 
of 3-4 cited on p. 104 in Phillips (1966) based on the numerical solution of Miles (1959). 

From the results of kS,, kS,, and kSm shown in table 3, i t  appears that  the nonlinear 
critical layer plays the most significant role in determining the wave-induced 
flowfield ; however, the effect of the turbulence on the nonlinear critical-layer 
structure is considerable and cannot be neglected. 

From table 3, we also find that the thickness of the nonlinear critical layer for the 
cases of U, /c  = 1.10 and 1.36 is so very large that i t  does not actually represent a 
local scale. It is also interesting to see that for these two cases the critical layer is 
thicker than the wave amplitude, so that the wave-induced flow above the critical 
layer depends strongly on the cat's-eye pattern of the critical layer. On the other hand, 
the wave-induced flow above the critical layer for the cases of U , / c  = 1.54 and 1.87 
depends strongly on the surface waveform because the critical layer tends to become 
thinner than the wave amplitude and to undulate with the waveform. More insights 
to this aspect are provided later. 

With the above knowledge of the critical height and the critical-layer thickness, 
we now examine the case of U , / c  = 1.10 when both y,* and 8, are comparable to 
the boundary-layer thickness. Under this condition, the wave-induced flow above the 
critical layer may depend dominantly on the undulation of the upper boundary of 
the cats'-eye pattern defined by 

y"& = S,~COS S(kx*-wt+8,)1 (5.12) 

(see equation (4.3.10) of Phillips 1977), where 8, is the phase angle locating the centre 
of the cat's-eye. The observed 8, shown in figure 4 indicates that 8, = 180' when 
U , / c  = 1.10. It becomes questionable whether a perturbation analysis is applicable, 
because g& is large and comparable to $7 The dominance of g& in determining the 
wave-induced flowfield above the critical layer may lead to  the substantial large value 
in A ,  as shown in table 3. The substantial large value of A ,  then may lead to  larger 
values of 161, and 8,. The process is nonlinear. The solution to the wave-induced flow 
requires sophisticated numerical computations, but to the first approximation the 
analyses based on a nonlinear critical-layer theory are expected to  give a qualitative 
description. 

According to  the nonlinear critical-layer theory (Benney & Bergeron 1969; 
Robinson 19T4), the vertical velocity v" at first order is continuous across the critical 
layer, but .il is not. The difference in d above and below the critical layer is O( lJ;S&) 
since the vorticity redistribution in the critical layer is O( UES,). Following Phillips 
(1977, p. 127), the wave-associated Reynolds stress as produced by the critical layer 
is given by 

(5.13) 
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For comparison we calculate the values of -%/Uu2, by assuming A ,  = K (Miles 1957) 
and invoking laic calculated from (5.9). The results of [GIc (which is also used for the 
determination of S,) and -a are listed in table 3. It is interesting to see that the 
value of -z for the case of U, /c  = 1.10 as determined from (5.13) is in reasonable 
agreement with that given in table 2 determined from the extrapolation of the 
measured velocity profiles. It seems that the Miles’ formula, i.e. (5.13), may describe 
reasonably well the production of the wave-associated Reynolds stress by the critical 
layer even though the critical layer is nonlinear; however, the value of lGlc invoked 
in (5.13) may be substantially different from that resolved from a linear analysis (Miles 
1959) because fj& as given by (5.12) is substantial. 

When y,* is high (as for the case of U,/c  = l . l O ) ,  the wave-induced flow below the 
critical layer is similar to that of U,/c  < 1.0, but with the additional modification 
due to the existence of the critical layer. The turbulent Stokes layer near the interface 
is compressed by the critical layer, and vice versa. But, when y,* is large, this 
compression may still be weak, so that the wave-induced flow below the critical layer 
may be represented by the superposition of the flowfields induced by the two layers, 
treating each separately as if one or the other did not exist. The distribution of -% 
then may be described by the superposition of (5.5) and (5.13), as is also indicated 
in figure 5 for the case U,/c = 1.10. 

When the wind speed increases from U,/c  = 1.10 to 1.36 and 1.87, the critical 
height decreases rapidly from ky,* = 0.47 to 0.085 and 0.012, while the global scale 
of the wind (boundary-layer thickness) remains practically unchanged. The viscous 
sublayer becomes much thinner (inversely proportional to u*)  so that more of the 
upper portion of the Stokes layer is influenced by the turbulence. However, the 
critical height is so low that the compression of the critical layer by the interface is 
very severe. Two consequences are expected: (a )  the cat’s-eye becomes much more 
slender, undulating along the waveform as ky,* decreases; and ( b )  the cat’s-eye 
becomes more uneven on the upper and lower sides of the critical height as a result 
of the interface compression since ky,* < k6,. The compression of the flowfield below 
the critical layer by the interface may enhance the production of the wave-associated 
Reynolds stress in the critical layer. 

When y,* is low, the component in 3 produced by the critical layer, i.e. the difference 
between the values of .ii above and below the critical layer, may become the dominant 
component in 3 below the critical layer. This component is O(UgS&), and is 180’ 
different from the phase of v“ near the interface. Since O6 = 270’ near the interface, 
the phase of this dominant component in 3 near the interface is 90’. Our observed 
data for 3 as shown in figure 3 for the cases of U,lc = 1.36 and 1.87 apparently 
support the above argument. The limit values of 141 and 8, as ky*+O then provide 
a good approximation to this dominant component in 3 below y,*. 

When y,* is low, most of the turbulent boundary layer is in the flow regime above 
the critical layer. The wave-induced flowfields above the critical layer are still 
dependent on the undulation of the upper boundary of the cat’s-eye. However, 
because k6, may become smaller than ka, the upper boundary of the cat’s-eye as 
referred to the Cartesian coordinate system is located at 

(y,) = (y,*) + fe-k(uc*) + fj&, (5.14) 

where fj; is given by (5.12) and (y?) is determined by U+.ii-c = 0. Hence (y,*) is 
a function of x*. The change in the critical height with x* represents the effect due 
to the nonlinear convection by 2. To the first approximation (y,*> can be expressed 
as (y,*) = y,*-CC/Uh, where .iic is the value of .ii at y,*. When y,* is small, the second 



148 C.-T. Hsu and E. Y. Hsu 

Run klal,lu:, ka e -W 0.6k8, 

2 0.012 0.067 0.28 
3 0.036 0.096 0.096 

0.027 0.103 0.045 
0.014 0.114 0.016 4 

IS 

$ The run of Hsu et a2. (1981) referred to as I. 

TABLE 4. Comparison of the amplitudes of the components contributing to the undulation of 
the upper boundary of cat's-eye 

term on the right-hand side of (5.14) is significant because i t  is O(f l .  In the limit of 
y,*+O, (y,) = 7 and the flow above the critical layer approaches that over a solid 
wavy wall. The amplitudes of the fundamental mode for each term on the right-hand 
side of (5.14) as normalized by k are k141e/UL, ka exp ( - ky:) and 0.6k8, respectively - 
they are listed in table 4. In table 4, the values of used to determine kl4l,/Uh 
are obtained from figure 3 of this study and figure 5 of I. From table 4 i t  is clear that 
the undulation of the surface wave in determining the wave-induced flowfield near 
the free stream becomes dominant at  high wind speed when the critical height and 
the critical layer are smaller than the wave amplitude. Above the critical layer and 
near the free stream, the phase 8, lags the phase of (y,) by 90°; hence the phases 
of (y,) as inferred from the observed 8, are 180°, 250°, 270° and 305'for U,/c = 1 .lo, 
1.36, 1.54 and 1.87 respectively. Clearly, the centre of the cat's-eye is located above 
the trough when U,/c = 1.10, and moves toward the wave crest along the leeward 
side of the wave when the wind speed increases. Owing to the displacement of the 
critical height by ii and the compression of the critical layer by the interface, the 
cat's-eye is highly asymmetric and skewed. An example of the asymmetric and skewed 
critical layer is given by Phillips (1977, figure 4.3). More details on this type of critical 
layer are provided by Gent & Taylor (1977). 

In the above, we have demonstrated that when y: is low the amplitude of ii near 
the interface is large, O( U,"S;), and the phase of ii near the interface is close to 90°. 
On the other hand, the phase of 3 near the free stream shifts continuously from 180' 
toward 360' along the leeward side of the wave when the wind speed increases. The 
phase of v" near the interface is 270', as required by interface boundary condition, 
while the phase of Gnear the free stream always lags the phase of ii near the free stream 
by 90°, as implied by inviscid theory. The mismatch between the phases near the 
interface and near the free stream is smoothed by the critical layer. If there is no 
turbulence, rapid changes in the phases of ii and v" may occur in the close proximity 
of the interface within a region of order of the critical-layer thickness centred at the 
critical height. However, with turbulence this smoothing process may diffuse more 
extensively away from the interface. The observed profiles of 8, and 8, for 
U,/c  = 1.36 and 1.87 as shown in figures 3 and 4 seem to be consequences of these 
smoothing and turbulent-diffusion processes. The distribution of --a then has a 
positive value near the interface, decreases to a negative minimum at somewhere in 
the boundary layer when 8, x Be, and increases to zero on approaching the free stream 
(see $4.3.2). It should be noted that the nonlinear critical layer is very diffusive since 
it locates in the energetic turbulent region. The fluid in the cat's-eye of the turbulent 
nonlinear critical layer is continuously renewed. 

In summary, the interaction between the wind and the wave depends not only on 
the wind and the wave scales, but also on the dynamic coupling parameter U,/c  
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which determines the critical height and consequently the critical-layer thickness. 
When U , / c  < 1 .O, the wind/wave interaction is characterized only by the wavelength 
k-l ,  the wave amplitude a, the Stokes-layer thickness B-l, the turbulent boundary- 
layer thickness Sand the viscous-sublayer thickness So. They form the non-dimensional 
parameters ka, k /B ,  kSo and kd. (The critical height y: here is regarded as at infinity, 
i.e. ky,* = co.) Under this condition, the entire turbulent boundary layer is below the 
critical height. For the experimental condition of this study, k / P  + ka so that the 
Stokes layer is a thin layer bent along the waveform. We also find that kS + ka, which 
implies the mean wind profile basically follows the waveform. For this study, kS x 1 .O ; 
hence the wave-induced flow in the region 0 < ky* < 1.0 is strongly affected by the 
wind shear while that in ky* > 1.0 behaves as that of a potential flow. Because 
k / B  x kSo, the upper portion of the Stokes layer is modified by turbulent diffusion so 
that the turbulent Stokes-layer thickness is comparable to the wave amplitude. This 
also leads to the oscillatory profile of -% as observed in this experiment. 

When U,/c > 1.0 but ky: = O(k&), the wave-induced flow in the region ky* > 1.0 
is still potential flow but is dependent on the undulation of the cat's-eye pattern 
associated with the critical layer. The critical layer is nonlinear and turbulently 
diffusive ; the critical-layer thickness is large compared with the wave amplitude, i.e. 
kS, > ka. The flow below the critical layer is still mainly in the turbulent boundary 
layer and behaves as if i t  were that in an undulating channel bounded by the wave 
surface and the lower boundary of the cat's-eye, except that the boundary condition 
a t  the lower bundary of the cat's-eye depends on the structure of the cat's-eye 
pattern, which cannot be known a priori. The cortical layer probably works as if it 
were an upper barrier in confining the diffusion of the turbulent Stokes layer, and 
on the other hand generates some additional wave-associated Reynolds stress due to 
the transport of vorticity when the fluid circulates around the cat's-eye. The effect 
on the Stokes layer by turbulent mixing is still dominant compared to that by 
critical-layer compression. Hence the distribution of -a in the boundary layer is 
similar to that for the case of U,/c  < 1 .O, but differs by a constant value of --.iiv" given 
by (5.13). 

When the wind speed is further increased that ky,* 4 O(ka),  the critical layer 
becomes a thin layer bending along the waveform in the proximity of the interface. 
The turbulent boundary layer is mostly above the critical layer. The region below 
the critical layer is so thin that the wave-induced flow near the interface is 
predominantly determined by the critical layer. The wave-induced flow near the free 
stream on the other hand is predominantly determined by the surface waveform. 
These two characteristics near the interface and the free stream are linked in the 
turbulent boundary layer through turbulent mixing. 

Apparently, there exists a value of U,/c  which distinguishes the flow regime of 
low critical level from that of high critical level. Our observations of this study 
indicate that this value may be located a t  somewhere near U,/c  = 1.36, when 
ky,* = O(ka) .  Under this circumstance, the critical layer is not only significant in 
determining the wave-induced flowfield near the free stream, but has also become 
predominant in determining the wave-induced flowfields near the interface. The flow 
regime of low critical level seems to be signified by the phase jump of 180' in the 
profiles of O i ,  as observed for the cases of U , / c  = 1.54 and 1.87. 
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6. Conclusions 
This study extends our earlier experimental works (Hsu et al. 1981) on U , / c  = 1.54 

to the cases U,/c  = 0.88, 1.10, 1.36 and 1.87 by changing the speed of the turbulent 
air flow, while the mechanically generated water surface wave was maintained at  1 Hz 
with the wave slope approximately equal to 0.1. The consistency between the results 
of the present experiment with our earlier results was established, since they applied 
the same data-taking technique (measurements in the wave-following coordinate 
system) and the same data-reduction scheme. The results of the experiment in the 
context of several theoretical analyses suggests the following. 

(1 )  The turbulent wind-velocity profiles over the mechanically generated water 
wave basically follow the waveform. The surface condition for the flow in this study 
is regarded as super-smooth because the mean turbulent shear stress supported by 
the surface drift current is relatively lower than that supported by a smooth flat plate. 

(2) The structure ofthe wave-induced velocity fields depends strongly on the height 
of the critical layer. Because the critical height changes exponentially with c /u ,  as 
a consequence of a log-linear mean-velocity profile, the structure of the wave-induced 
velocity fields depends very strongly on the parameter U,/c .  

(3) When the critical height is high (the cases of U,/c  = 0.88 and 1.10 in which 
the turbulent boundary layer is mainly below the critical layer), the structure of the 
wave-induced velocity fields is affected drastically by the Stokes layer at  the 
interface. The Stokes layer is considerably thickened by turbulent mixing. Hence the 
oscillatory characteristics of the wave-associated Reynolds stress - % can extend to 
a significant height before it decays to negligible level. 
(4) When the critical height is low (the cases U,/c  = 1.36, 1.54 and 1.87 so that 

the turbulent boundary layer is mainly above the critical layer), the wave-induced 
velocity near the free stream depends predominantly on the undulations of the critical 
height and the upper boundary of the cat’s-eye. On the other hand, the wave-induced 
velocity in close proximity to the interface is determined strongly by the compression 
of the flowfields below the critical layer by the critical layer and the interface, and 
by the interface boundary condition. The effect of turbulence is then to link these 
wave-induced velocities near the interface and the free stream to yield continuously 
varying profiles. 

(5) The critical layer is nonlinear and is turbulently diffusive. The thickness of the 
turbulent nonlinear critical layer is larger than the wave amplitudes when the critical 
height is high. The critical layer becomes thinner than the wave amplitudes and bends 
along the waveform when the critical height is lower than the wave amplitudes. 

(6) Miles’ formula, i.e. (5.13) with A ,  = n, seems to be applicable when the critical 
level is not too low (the cases U,/c  = 1.10 and 1.36); however, the value of r used 
to infer the value of 181c has to be determined directly from the measurements rather 
than from the numerical computations of a quasi-laminar model. When the critical 
layer is low (the cases U,/c  = 1.54 and 1.87), Miles’ formula even with the 
experimental evaluation of r underpredicts the wave-supported stress -% by a 
factor of two to three. 

(7)  While the frictional drag -n has a constant-stress layer below ky* < 0.5 
and outside the viscous sublayer (see figure 4 of I) ,  the waveform drag -%is observed 
to change drastically in the constant-stress layer of - m. As a result, the total stress 
-((u’w‘+iZj) exerted by the turbulent wind on the interface does not provide a 
constant-stress layer above the interface. 

(8) The response of the turbulent Reynolds stresses to the wave depends on the 

- -  
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flow regimes near the interface or in the boundary layer. Near the interface, the 
wave-induced turbulent Reynolds stresses are produced from the stretching and 
changing in the direction of the turbulent velocity fluctuations due to the surface 
displacements. Hence the maximum turbulent intensity occurs at the wave crests, 
where the stretching effect is maximum, and the maximum shear (u’v’) occurs at 
the positions of maximum wave slope, where the change in the direction of the 
velocity fluctuation is maximum. In  the boundary layer, the relations between the 
wave-induced turbulent Reynolds stresses and the wave-induced velocities are 
basically of an eddy-viscosity type, with the wave-induced turbulent intensity 
governed by the acceleration and deceleration processes of the phase-average flow 
observed in the frame travelling with the wave celerity. 

(9) The inclusion of both the nonlinear and turbulent effects on the wave-induced 
flowfields is essential to  the success of numerical modelling. 

This work was supported by the National Science Foundation through Grant No. 
OCE-8100517. The experimental data were obtained when the first author was at the 
Department of Civil Engineering, Stanford University. 

Appendix 
A model of the turbulent Stokes layer 

B y  Russ E. Davis (Scripps Institution of Oceanography, La  Jolla) 

As suggested by Hsu & Hsu (HH) in 35.2, modelling of a laterally homogeneous 
oscillating turbulent boundary layer can be approached by assuming that the 
effective viscosity is the sum of the molecular viscosity, v ,  and the eddy viscosity 
obtained from the law of the wall. If the fluctuating downstream velocity is 
u = Re [U(y )  exp ( iwt ) ]  then the additive-viscosity model leads to 

d d 
iwU = -(v+Ku*z)- U ,  

dY dY 

where K is von KEirman’s constant and u* is the friction velocity. The auxiliary 
conditions for (A 1)  are that U vanish as y+ 00 and that U ,  U’, or some combination 
of the two, be specified a t  y = 0. Let 

If F ( r )  is a solution of 

$(7&F) = 4i,uF, lim F = 0, 
7+ m 

then U ( y )  is some multiple of F( ( y  + z,)/h) ; the condition U ( y  = 0) = Uo corresponds 
to 

Transforming the independent variable in (A 2) to 74 converts that equation to (9.9.3) 
of Abramowitz & Stegun (1964) (AS) with the solution 

F(q)  = Ko(q+ eiiaz), 

where KO is the zeroth-order modified Bessel function with limz+m K,(x)  = 0. 
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For 7 4 1 an approximate representation 

F(7)  = -*[( 1 ++ipq) In 7 ++ipx-O.232] + O(7)  (A 3) 

may be obtained from AS (9.6.13). This shows that for y 4 h the velocity profile is 
logarithmic and phase variation occurs on the scale 4h. For q S 1 an approximate 
representation 

~ ( 7 )  = exp [ -  1 +pi) (h)i-tipx] (A 4) 

may be obtained from AS (9.7.2). This will be recognized as a close relative of the 
classical constant-viscosity Stokes-layer solution. The exact amplitude and phase of 
the function F(7)  can be determined from figure 9.11 and table 9.12 of AS with the 
substitution amplitude [F(7) ]  = N,(qi) and phase [F(7)] = $,($). 

In $5.2, HH use this model to interpret observations of the wave-associated 
Reynolds stress in light wind flow over a water wave with amplitude a and 
wavenumber k .  In (5.3) HH show that, because the turbulent stresses affect the 
normal velocity component v“ only slightly, the wave-associated Reynolds stress - 
should vary as 

where y* is the wave-following normal coordinate and U is the solution of ( 1 )  with 
U(0)  = 1.  HH’s (5.5) is an approximation (A 5 )  based on the large-7 form (A 4) in 
which the factor qb has been replaced by the adjustable constant A,. By comparing 
this approximation with the results of their U , / c  = 0.88 experiment, HH find 
support for the additive-viscosity model. Since this is an important result it seems 
crucial to examine the comparison with the exact solution, particularly since the 
experiment corresponds to zo/A = 1.3, which is not large. 

The approximation (5 .5)  predicts the first negative minimum of -% to occur at  
k = or ky* = 0.12, which is in good agreement with observation. Examination 
of figure 9.1 1 of AS shows that the phase of F varies almost exactly as (k)i for values 
of 7 > 0.5, so that agreement between the observed position of the stress extremum 
and the exact solution is good. The magnitude of the observed stress at the extremum 
is, however, four times larger than that predicted by this solution. Even the 
approximation (5 .5) ,  which does not include the 7-f decrease of amplitude found in 
(A 4), requires the unrealistic choice A ,  = 2.5 to match the observations (HH 
apparently erred in stating that a value of 1.5 was sufficient). It must be concluded 
therefore that the additive-viscosity model is only qualitatively correct and the 
agreement obtained may be only coincidental. 

It might be noted that the exact solution above is directly applicable to oscillating 
boundary layers in a rotating frame. In this case the velocity parallel to the boundary 
is represented as u1 +iu, = U(y = xg) exp (iw’t), and (A 1 )  holds with the substitution 
w = w‘ + f, where f is the Coriolis parameter. 

- 
--3G = (akc)2 e&Y* Im [U(y*)], (A 5 )  
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